skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bose, Amartya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Quantum‐classical formulations of reactive flux correlation functions require the partial Weyl–Wigner transform of the thermalized flux operator, whose numerical evaluation is unstable because of phase cancelation. In a recent paper, we introduced a non‐equilibrium formulation which eliminates the need for construction of this distribution and which gives the reaction rate along with the time evolution of the reactant population. In this work, we describe a near‐equilibrium formulation of the reactive flux, which accounts for important thermal correlations between the quantum system and its environment while avoiding the numerical instabilities of the full Weyl–Wigner transform. By minimizing early‐time transients, the near‐equilibrium formulation leads to an earlier onset of the plateau regime, allowing determination of the reaction rate from short‐time dynamics. In combination with the quantum‐classical path integral methodology, the near‐equilibrium formulation offers an accurate and efficient approach for determining reaction rate constants in condensed phase environments. The near‐equilibrium formulation may also be combined with a variety of approximate quantum‐classical propagation methods. 
    more » « less